Current research projects

Image Investigation of coolants
Image Solar Cooling
Image State of system and failure analyses
Image Modular storage system for solar cooling
Image Calibration of Low Temperature Sensors
Image IO-Scan - Integral measuring optical scanning method
Image Swirl-free on the move...
Image Pulse-Tube-Refrigerator with sealed compressor
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Preformance measurements of heat exchangers
Image Corrosion inhibitor for ammonia absorption systems
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Heat2Power
Image Micro heat exchangers in refrigeration
Image Testzentrum PLWP at ILK Dresden
Image All-in-one device for freeze-drying and production of biomaterial

You are here:   /  Home


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination