Current research projects

Image Low Temperature Measuring Service
Image Lifetime prediction of hermetic compressor systems
Image Range of services laboratory analyses
Image Calibration leak for the water bath leak test
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Testing of mobile leak detectors according to DIN EN 14624
Image Low noise and non metallic liquid-helium cryostat
Image Brine (water)-water heat pump
Image Computational fluid dynamics CFD
Image Micro heat exchangers in refrigeration
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Verification of storage suitability of cryo tubes
Image Tribological investigations of oil-refrigerant-material-systems
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Investigation according to DIN EN ISO 14903
Image Ionocaloric cooling

You are here:   /  Home


Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

high performance efficiency, environmental friendliness, compactness, cost-effectiveness

The main objective of the R&D project is the development of a cryogenic cooling system capable of recondensing a gas stream of vaporized natural gas back to its liquid form or cooling and/or liquefying other gases to a temperature level of 77 K. The technical solutions for the development of the system aim to provide a number of advantages over existing systems: high performance efficiency, environmental friendliness, compactness, and cost-effectiveness.
The cryogenic refrigeration system will include several innovations and technical solutions:

  • Development of an innovative and cost-effective refrigeration source based on a mixed-refrigerant low-temperature cooler.
  • Detailed calculation and determination of innovative as well as adapted zeotropic refrigerant mixtures, which optimize the energy efficiency of the cooler with respect to its application and ensure environmental friendliness.
  • Determination of the optimal as well as adapted working parameters and dimensions of the cooler and its components with regard to its desired properties (efficiency, fire protection, etc.).

On the basis of the chosen principle of the cryogenic cooling system, a special Linde-Hampson refrigerant mixture cooler was designed, which works with zeotropic refrigerant mixtures and should achieve temperatures of ≤ 100 K, see Figure 1. Thermodynamic calculations of the circuit and the determination of the components of the working mixture and their composition were carried out. For this purpose multiparametric optimization methods as well as gradient methods with different calculation grids were used.
As functional model, a system was implemented which should enable the liquefaction of nitrogen via a second refrigerant circuit. This model was initially tested with simple standard refrigerants and multi-component refrigerant mixtures and works very reliably. The results obtained will be used in the next step to demonstrate the liquefaction of nitrogen.


Your Request

Further Projects

Image

Mass Spectrometer

Determining the composition of gas mixtures in the high or ultra-high vacuum range

Image

Tensile and compression testing

Determination of yield strength, tensile strength and elongation at break

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process