Current research projects

Image Software modules
Image Reduction of primary noise sources of fans
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Performance tests of condensing units
Image Preformance measurements of heat exchangers
Image Low noise and non metallic liquid-helium cryostat
Image Combined building and system simulation
Image Non- invasive flow measurements
Image Micro heat exchangers in refrigeration
Image Practical training, diploma, master, bachelor
Image Electrical components in refrigeration circuits
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Heat2Power
Image Modular storage system for solar cooling
Image Ionocaloric cooling

You are here:   /  Home


Innovative Parahydrogen Generator Based on Magnets

Euronorm GmbH

Erik Neuber

+49-351-4081-5122

Magnetic Gas Separation of the Hydrogen Isomers

Molecular hydrogen occurs in two isomeric forms which differ in their configuration of the nuclear spin: orthohydrogen and parahydrogen, whereas the latter accounts for only 25% of the whole gas at room temperature. Contrary to this, parahydrogen in its concentrated form is utilised especially for hyperpolarisation (so-called PHIP – Parahydrogen Induced Polarisation), which is a widespread method in the fields of medicine and chemistry to enhance the contrast of MRI and NMR apparatus.
However, all procedures for the production of this spin isomer are based upon cryogenic methods, which have comparatively high expenses for energy and maintenance. Because of this, there exists the demand for a cheap and efficient method to enrich parahydrogen for direct use in successive applications.

Project Goals

  • Development of an innovative ortho–para converter, which works at room temperature by using the principle of magnetic gas separation;
  • Measurement of the separation ability of the chosen principle at room temperature and optimisation of the resulting effect and
  • Enrichment up to 99% of parahydrogen at a variable volume flow (pursued are at least 4 standard litres per minute).

Your Request

Further Projects

Image

Investigation of materials

Investigations regarding the compatibility of materials with refrigerants, oils and heat transfer fluids

Image
Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Computational fluid dynamics CFD

Scientific analysis of flows