Current research projects

Image Calibration leak for the water bath leak test
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Solar Cooling
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Non- invasive flow measurements
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Software modules
Image Test procedures for electrical components
Image Performance tests of condensing units
Image Hydrogen and methane testing field at the ILK
Image Software for technical building equipment
Image Investigation according to DIN EN ISO 14903
Image Influenced melting point of water by magnetic field
Image Reduction of primary noise sources of fans
Image Tribological investigations of oil-refrigerant-material-systems

You are here:   /  Home


Investigation of material-dependent parameters

Industry and R&D

Gunar Schroeder

+49-351-4081-5129

Investigation of the permeation behavior

Permeation is the penetration of solid matter by another substance. The driving force for this is a gradient of the chemical potential of the permeate. In practice, this gradient is replaced by a measurable quantity such as the pressure gradient. The permeability of a material depends on the surface temperature and is usually specified with the unit \( \frac{\mu g}{cm^2\:min} \)

Without external influences, the permeate always moves in the direction of the lower concentration or the lower partial pressure. For theoretical consideration, permeation can be divided into three sections across the solid:

  • Sorption, for example, a gas is absorbed at the surface of the solid
  • Diffusion, this gas diffuses through the solid through molecular gaps towards the surface with a lower gas concentration
  • Desorption, the gas is released again from this surface

The experimental setup to investigate this process, see the following figures, essentially consists of a sample chamber. The sample is mounted with a seal or against a sealing surface. A test gas with a defined overpressure is applied to the volume on the "left" of the sample. The volume to the "right" of the sample is connected to a detector. The pressure on both sides of the sample, the temperatures and the gas flow rate are measured over a longer period of time (24 - 48 h).

Parameter Sample limits
materials plastics, metals
dimensions, diameter, and wall thickness 58 ... 60 mm, 1 ... 3 mm
other dimensions on request
pressure difference up to 10 bar (145 psi)
temperature range room temperature, other conditions on request
test gas helium or hydrogen
detector measuring range up to \(10^{-9} \frac{mbar\:l}{s} \), optional with calibration

 


Your Request

Further Projects

Image

Software modules

Software for properties of refrigerants

Image

Verification of storage suitability of cryo tubes

Artificial aging of primary packaging for biobanking applications

Image

Preformance measurements of heat exchangers

Is the heat exchanger properly sized?

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS