Current research projects

Image 3D - Air flow sensor
Image Air-flow test rig for fan characteristic measurement
Image Laseroptical measurement
Image Certifiable connection types in cryogenics
Image Reduction of primary noise sources of fans
Image Verification of storage suitability of cryo tubes
Image Investigation according to DIN EN ISO 14903
Image Performance tests of condensing units
Image Reducing the filling quantity
Image Mass Spectrometer
Image Solar Cooling
Image Investigation of material-dependent parameters
Image Cool Up
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Filter Tests
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr

You are here:  Home /  Research and Development


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

An application project for the development of heat exchangers for cryogenic multiphase fluids is planned.

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects - Research and Development

Image

High Capacity Pulse Tube Cooler

for Cryogenic High-Power Applications

Image

Thermal engines

Power Generation from Waste Heat

Image

Helium extraction from natural gas

Innovative solutions for helium extraction

Image

Ice Slurry Generation

Using Direct Evaporation

Image

Pulse-Tube-Refrigerator with sealed compressor

for mobil use in the hydrogen technology