Current research projects

Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Low Temperature Tribology
Image Investigation of coolants
Image Preformance measurements of heat exchangers
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Humidifier System for High-Purity Gases
Image Computational fluid dynamics CFD
Image Test rigs for refrigeration and heat pump technology
Image Thermal engines
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Measurement of insulated packaging
Image Solar Cooling
Image Micro heat exchangers in refrigeration
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Brine (water)-water heat pump
Image Pulse-Tube-Refrigerator with sealed compressor

You are here:  Home /  Research and Development


Hydrogen and methane testing field at the ILK

BMWi

Dr. Andreas Kade

+49-351-4081-5117

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

ILK Dresden operates an innovative testing ground for cryogenic high-pressure applications with hydrogen (H2), methane (CH4), and methane–hydrogen mixtures. With this, different services can be offered, among other things:

  • Test and qualification of components at temperatures ranging from 20 K (−253 °C) to room temperature and pressures ranging from high vacuum to 1000 bar (e.g. test of sealings, permeation tests).
  • Investigation of charge and discharge processes at cryogenic or room-temperature-operated storage systems for hydrogen and methane (e.g. adsorber storage systems, cryo-compressed hydrogen).
  • Investigation of catalyst materials for the ortho–para conversion of hydrogen.
  • Long-time thermal charging of components and materials in hydrogen or methane atmosphere at up to +200 °C and up to 160 bar for investigating degradation effects (e.g. hydrogen embrittlement).
  • Development of different hydrogen and methane components (e.g. recooling systems, latent-heat storage systems, cryogenic pressure storage systems, heat exchangers, cryogenic pumps).
  • Realisation of complete-system solutions for hydrogen and methane.

The following diagram depicts the specific storage density that can be achieved depending on temperature and pressure:


Your Request

Further Projects - Research and Development

Image

Characterisation of Superconductors in Hydrogen Atmosphere

Are superconductors really compatible with hydrogen?

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825