Current research projects

Image Corrosion inhibitor for ammonia absorption systems
Image Software for test rigs
Image Heat2Power
Image Refrigerants, lubricants and mixtures
Image Range of services laboratory analyses
Image Reducing the filling quantity
Image Practical training, diploma, master, bachelor
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Optimizing HVAC operation with machine learning
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Investigation of coolants
Image Electrical components in refrigeration circuits
Image Energy efficiency consulting - cogeneration systems
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Combined building and system simulation
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

You are here:  Home /  Research and Development


Innovative Parahydrogen Generator Based on Magnets

Euronorm GmbH

Erik Neuber

+49-351-4081-5122

Magnetic Gas Separation of the Hydrogen Isomers

Molecular hydrogen occurs in two isomeric forms which differ in their configuration of the nuclear spin: orthohydrogen and parahydrogen, whereas the latter accounts for only 25% of the whole gas at room temperature. Contrary to this, parahydrogen in its concentrated form is utilised especially for hyperpolarisation (so-called PHIP – Parahydrogen Induced Polarisation), which is a widespread method in the fields of medicine and chemistry to enhance the contrast of MRI and NMR apparatus.
However, all procedures for the production of this spin isomer are based upon cryogenic methods, which have comparatively high expenses for energy and maintenance. Because of this, there exists the demand for a cheap and efficient method to enrich parahydrogen for direct use in successive applications.

Project Goals

  • Development of an innovative ortho–para converter, which works at room temperature by using the principle of magnetic gas separation;
  • Measurement of the separation ability of the chosen principle at room temperature and optimisation of the resulting effect and
  • Enrichment up to 99% of parahydrogen at a variable volume flow (pursued are at least 4 standard litres per minute).

Your Request

Further Projects - Research and Development

Image

High Capacity Pulse Tube Cooler

for Cryogenic High-Power Applications

Image

Thermal engines

Power Generation from Waste Heat

Image

Helium extraction from natural gas

Innovative solutions for helium extraction

Image

Ice Slurry Generation

Using Direct Evaporation

Image

Pulse-Tube-Refrigerator with sealed compressor

for mobil use in the hydrogen technology