Current research projects

Image Certifiable connection types in cryogenics
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Preformance measurements of heat exchangers
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Low noise and non metallic liquid-helium cryostat
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Heat2Power
Image Investigation of materials
Image Humidifier System for High-Purity Gases
Image Innovative Parahydrogen Generator Based on Magnets
Image Lifetime prediction of hermetic compressor systems
Image Computational fluid dynamics CFD
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Testzentrum PLWP at ILK Dresden
Image Intelligent innovative power supply for superconducting coils
Image Low Temperature Measuring Service

You are here:  Home /  Research and Development


Innovative small helium liquefier

EuroNorm GmbH (BMWi)

Dr. Erik Neuber

+49-351-4081-5122

Liquefaction rates from 10 to 15 l/h

The goal of the R & D project is to explore new innovative ways to develop the functional model of a "helium liquefier for the small liquefaction rate". The development of such a system should cover the still non-existent area of the market.

 

This liquefier should contain several innovations and technical solutions:

  • Development of a helium liquefaction system with a liquefaction rate of 10 - 15 liters per hour of liquid helium.
  • Development of an innovative pre-cooling stage, which works with a mixture of helium and refrigerants as working fluid.
  • Detailed investigation of an innovative helium cycle within the development of the helium small liquefier with the ability to operate in different operating regimes: helium liquefaction, cooling and temperature stabilization/control.
  • Operation of the condenser with a liquefaction rate that can be varied over a wide range - between 75% and 100%.

Currently, the functional design of the helium small liquefier is being set up. The figure shows a 3D model of the cold box, in which all heat exchangers and cold valves are mounted. In the upper part of the cold box, two prototypes of low flow helium turboexpanders are mounted. All external components, piping and condenser control system are located on the front of the cold box.


Your Request

Further Projects - Research and Development

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?

Image

Thermostatic Expansion Valves

Does the TXV function correctly?

Image

Testzentrum PLWP at ILK Dresden

Test Fluid-Energy Machines and Components