Current research projects

Image Cryostats, Non-Metallic and Metallic
Image Practical training, diploma, master, bachelor
Image Panel with indirect evaporative cooling via membrane
Image Lifetime prediction of hermetic compressor systems
Image 3D - Air flow sensor
Image Computational fluid dynamics CFD
Image State of system and failure analyses
Image Verification of storage suitability of cryo tubes
Image Modular storage system for solar cooling
Image All-in-one device for freeze-drying and production of biomaterial
Image Multifunctional electronic modules for cryogenic applications
Image Investigation of materials
Image Pulse-Tube-Refrigerator with sealed compressor
Image Low Temperature Tribology
Image High temperature heat pump
Image Mass Spectrometer

You are here:  Home /  Research and Development


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects - Research and Development