Current research projects

Image Practical training, diploma, master, bachelor
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Modular storage system for solar cooling
Image Hydrogen and methane testing field at the ILK
Image Pulse-Tube-Refrigerator with sealed compressor
Image Thermostatic Expansion Valves
Image Test rigs for refrigeration and heat pump technology
Image Test procedures for electrical components
Image Influenced melting point of water by magnetic field
Image Range of services laboratory analyses
Image Non- invasive flow measurements
Image Low Temperature Measuring Service
Image 3D - Air flow sensor
Image Innovative Manufacturing Technologies for Cryosorption Systems

You are here:  Home /  Research and Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Research and Development

Image

Reducing the filling quantity

How much refrigerant must be filled?

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?

Image

Thermostatic Expansion Valves

Does the TXV function correctly?

Image

Testzentrum PLWP at ILK Dresden

Test Fluid-Energy Machines and Components