Current research projects

Image Energy efficiency consulting - cogeneration systems
Image Verification of storage suitability of cryo tubes
Image Computational fluid dynamics CFD
Image Heat2Power
Image Cryostats, Non-Metallic and Metallic
Image Performance tests of refrigerant compressors
Image Pulse-Tube-Refrigerator with sealed compressor
Image State of system and failure analyses
Image Laseroptical measurement
Image High temperature heat pump
Image 3D - Air flow sensor
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Swirl-free on the move...
Image Tensile and compression testing
Image Corrosion inhibitor for ammonia absorption systems
Image Intelligent innovative power supply for superconducting coils

You are here:  Home /  Research and Development


Pulse-Tube-Refrigerator with sealed compressor

Federal Ministry of Economics and Energy

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

for mobil use in the hydrogen technology

Within the research project "Mobile single-stage pulse tube cooler with hermetic compressor drive" (project number MF 130012), a compact, robust and low-maintenance cryocooler was developed.
Possible applications for this cryocooler, e.g.,

  • Cooling of mobile high-pressure tanks for storing fuels in cryogenic liquid or supercritical state (e. g. H2 – cryogenic under high pressure)
  • mobile cooling applications < –40°C in medical technology, transport of organic material or samples

The system has a simple and cost-effective design with the following advantages:

  • Mobile use, supply voltage 12 V or 24 V, air-cooled
  • Supply of cryogenic temperatures in the range 60...120 K
  • Low maintenance and long-life, no moving parts in the cold part
  • Programmable temperature curves via microcontroller-based control
  • Low power consumption, in the range of 500 W
  • Low space requirement, arrangement can be adapted
  • Lower costs control through extensive use of commercial components

Figure 1 shows the experimental setup of the cryocooler in a specially adapted orifice double inlet configuration. With the use of a special valve control, 2 W cooling capacity at 77 K and 5 W at 90 K could be achieved. The lowest temperature reached with this single-stage configuration was 68 K. The temperature stability of the system was validated in a test lasting 100 h, see figure 2. In further investigations with a specially adapted compressor, even lower temperatures are to be achieved, down to 40 K.

We are looking for industrial partners for adaptations for special application purposes or possible further developments. Conceivable are, for example, a compact system suitable for use in motor vehicles in a functional housing with the necessary interfaces or a further development of the current cooler to achieve higher cooling capacity, lower temperatures and higher efficiency.


Your Request

Further Projects - Research and Development

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations

Image

Innovative Parahydrogen Generator Based on Magnets

Magnetic Gas Separation of the Hydrogen Isomers

Image

Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

high performance efficiency, environmental friendliness, compactness, cost-effectiveness

Image

Intelligent innovative power supply for superconducting coils

Compact, powerful power supply with 4-quadrant converter

Image

Laseroptical measurement

PIV and LDA / PDA