Aktuelle Forschungsprojekte

Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Innovativer magnetbasierter Parawasserstoffkonverter
Image Untersuchungen an Deckenkühlgeräten
Image Luft-Wasser Wärmepumpen
Image Elektrische Komponenten in Kältekreisläufen
Image IO-Scan – Integral messendes Optisches Scanverfahren
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image Leistungsprüfung an Verflüssigungssätzen
Image Prüfverfahren für elektrische Komponenten
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image Leistungsmessung an Wärmeübertragern
Image Zustands- und Schadensanalysen
Image Tieftemperatur-Messdienstleistungen
Image Untersuchung von Kühlsolen
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“

Dr. rer. nat. Torsten Burkholz

+49-351-4081-5410

ongoing

Verbesserung der hygienischen Prävention durch elektrochemische Dekontamination

Aufgrund der Gefahr sich großflächig ausbreitender Krankheiten und Seuchen gewinnt das Thema Hygiene mehr und mehr an globaler Bedeutung. Eine Methode zur Reduktion von Krankheitsausbrüchen deren Prävention durch Entfernung von gefährlichen Verunreinigungen von Oberflächen (Dekontamination). Das ILK forscht unter der Leitung von Dr. Burkholz an einer kostengünstigen und effektiven Methode - der elektrochemischen Dekontamination von elektrisch leitfähigen Oberflächen - zur Verbesserung und Erweiterung der bestehenden Hygienemaßnahmen. Die Wirkungsweise dieser Dekontaminationsmethode ist der elektrochemische Angriff ausgehend von der verunreinigten Oberfläche. Dies können beispielsweise Oberflächen von medizinischen Geräten sein. Durch die elektrochemische Erzeugung reaktiver Sauerstoffspezies (ROS) wird sämtliches biologisches anhaftendes Material zerstört. Selbst Biofilme, die sich durch eine Schleimschicht vor chemischen Reinigungsmitteln schützen, können mit diesem Prinzip effektiv zerstört werden.

Einsatzbereiche

Verbesserung bestehender Reinigungs- und Sterilisations- und Dekontaminationsprozesse beispielsweise in der Medizin, Klima- und Lüftungstechnik, Lebensmittelindustrie und Reinraum-Technologie.

Zielstellung

„EDeKo II“ wird sich mit der Erzeugung reaktiver Sauerstoffspezies sowie der Materialstabilität unter erhöhen Temperaturen, dem Einfluss von Strömungseffekten und unterschiedlichen Drücken beschäftigen. Zusätzlich sollen neue Apparaturen entwickelt und gebaut werden, die die elektrochemische Dekontamination unter anwendungsrelevanten Bedingungen gewährleisten.

Vorgehen

Im vorangegangenen Projekt EDeKo wurde die Erzeugung reaktiver Sauerstoffspezies (ROS) im Labormaßstab unter genau festgelegten Bedingungen optimiert. „Bei EDeKo II“ soll der Einfluss verschiedener Faktoren, wie zum Beispiel ein veränderlicher Elektrodenabstand, ein verändertes Verhältnis aus Anoden- und Kathodenfläche, sowie unterschiedliche Drücke und Temperaturen, auf die ROS-Bildung überprüft werden. Für die experimentellen Messungen werden neue elektrochemische Zellen konzipiert und gebaut, welche den Abstand der Elektroden zueinander in definierten Schritten variabel gestalten und unterschiedliche Geometrien für die Anode gewährleisten.

Bildmaterial

Die experimetelle Basis für die elektrochemischen Untersuchungen bildet der Potentiostat Metrohm Autolab PGSTAT 204 inklusive zugehöriger Mess- und Auswertesoftware (Nova 2.0) sowie verschiedene Edelstahl-Druckbehälter (z. B. am ILK entworfene Durchsichtautoklaven), in dem Untersuchungen Temperaturen von bis zu 95 °C und Drücken von maximal 10 bar möglich sind.

Abbildung: Cyclovoltammogramme einer Cu-Arbeitselektrode gegen die Ag/AgCl-Elektrode mit der in Kaliumphosphat-Puffer (pH 7; blau), Kaliumdihydrogenphosphat-Lösung (pH 4,5; dunkelgrün), Dikaliumhydrogenphosphat-Lösung (pH 9,2; rot), Natriumsulfat-Lösung (pH 5,9; orange), Natriumcitrat-Lösung (pH 8,3; hellgrün) und Natrium-Bicarbonatpuffer (pH 6,5; violett).

Abbildung: Bild1 Elementverteilung einer mit Protein behandelten Cu-Oberfläche ohne elektrochemische Vorbehandlung. Bild2 Nach elektrochemischer Vorbehandlung.

Verwandte Links

https://www.wotech-technical-media.de/womag/ausgabe/2014/05/24_med_burkholz_05j2014/24_med_burkholz_05j2014.php (Link zur WoMag-Publikation)

https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/22719 (Dissertationsschrift)

T. Burkholz, Elektrochemische Dekontamination elektrisch leitfähiger Oberflächen (EDeKo) - Abschlussbericht, EURONORM GmbH, VF160045 (2019).

C. Jacob, G. Kirsch, A. Slusarenko, P.G. Winyard, T. Burkholz (eds.), Recent Advances in Redox Active Plant and Microbial Products: From basic chemistry to widespread applications in Medicine and Agriculture, Springer Science, ISBN: 978-9401789523 (2015).

T. Burkholz, C. Jacob, A word on redox activity, in: C. Jacob, G. Kirsch, A. Slusarenko, P.G. Winyard, T. Burkholz (eds.), Recent Advances in Redox Active Plant and Microbial Products: From basic chemistry to widespread applications in Medicine and Agriculture, Springer Science (2015).

U.M. Viswanathan, T. Burkholz, C. Jacob, Electrochemistry at the edge of reason: Chalcogen-based redox systems in biochemistry and drug design, Zeitschrift für Physikalische Chemie, 227(5), 691-706 (2013).

E. Domínguez Álvarez, U.M. Viswanathan, T. Burkholz, K. Khairan, C. Jacob, Bio-Electrochemistry and Chalcogens, Chapter 7, in M. Schlesinger (ed.), Applications of Electrochemistry in Medicine, Modern Aspects of Electrochemistry, 56, 249-282 (2013).


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Leistungsprüfung an Verflüssigungssätzen

Wie effizient ist der Verflüssigungssatz ?

Image

Zustands- und Schadensanalysen

Ist der Zustand des Kältemittelverdichters ok?

Image

Thermostatische Expansionsventile

Arbeitet das TEV eigentlich richtig?

Image

Testzentrum PLWP am ILK

Prüfung Fluid-Energiemaschinen und kältetechnische Bauteile

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen