Aktuelle Forschungsprojekte

Image Filterprüfungen
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers
Image Tieftemperatur-Messdienstleistungen
Image Prüfbad-Haube
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image 3D - Strömungssensor
Image Laseroptische Strömungsmessung
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Tieftemperaturtribologie
Image Vakuum-Flüssigeis-Technologie
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Rohrgekapselte Latentwärmespeicher

Neuartige Wärmespeicherelemente

Image

Filterprüfung

Prüfverfahren und Prüfvorrichtung für ABEK Filterelemente

Image

Akustik und Schwingungen

Messung - Beratung - Optimierung