Aktuelle Forschungsprojekte

Image Platz-integrierte Sekundärluft-Aufbereitung
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Filterprüfung
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Kälte-Erzeugung und Kältespeicherung
Image Leistungsangebot Laboranalysen
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Rohrgekapselte Latentwärmespeicher
Image Prüfstände zur Messung der Luftleistung
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Kalibrierung von Tieftemperatursensoren
Image Innovativer magnetbasierter Parawasserstoffkonverter
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Verhalten mehrphasiger kryogener Fluide
Image Gesamtsystemoptimierung von Kältetechnischen Alagensystemen für Energiewende und Klimaschutz
Image Apparatur und Verfahren zur Degradationsprüfung

Sie befinden sich hier:  Startseite /  Messungen und Prüfungen


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt