Aktuelle Forschungsprojekte

Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Prüfstände zur Messung der Luftleistung
Image Prüfverfahren für elektrische Komponenten
Image Verhalten mehrphasiger kryogener Fluide
Image 3D - Strömungssensor
Image Leistungsmessung an Wärmeübertragern
Image Leistungsangebot Laboranalysen
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Apparatur und Verfahren zur Degradationsprüfung
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Zug- und Druckprüfung
Image Untersuchungen nach DIN EN ISO 14903
Image Mollier hx-Diagramm
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Mikrowärmeübertrager in der Kältetechnik

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Stoffdatenmodule

Stoffdatensoftware für Kältemittel

Image

Rohrgekapselte Latentwärmespeicher

Neuartige Wärmespeicherelemente

Image

Solare Kühlung

Solare Kühlung mit Photovoltaik

Image

Prüfverfahren für elektrische Komponenten

Isolationseigenschaften von Hermetikverdichtern

Image

Prüfstände zur Messung der Luftleistung

Messung von Volumenstrom und Widerstandskennlinien