Aktuelle Forschungsprojekte

Image MetPCM
Image Vakuum-Flüssigeis-Technologie
Image Innovative Fertigungstechnologien für Kryosorptionssysteme
Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Tieftemperatur-Materialprüfkammer
Image Befeuchtungsanlage für hochreine Gase
Image Prüfstände zur Messung der Luftleistung
Image Massenspektrometer
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Reduzierung der Expansionsverluste von Kälteanlagen
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Strömungssimulation CFD
Image Controlled Rate Freezing-Gerät für Multiwellplatten (CRF-Multi)
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image Cool Up

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image
Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?

Image

Leistungsprüfung an Verflüssigungssätzen

Wie effizient ist der Verflüssigungssatz ?

Image

Elektrische Auskopplung aus einer Expansionsturbine

Kostengünstige Umwandlung kleiner elektrischer Leistungen